LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discriminative Scale Learning (DiScrn): Applications to Prostate Cancer Detection from MRI and Needle Biopsies

Photo by hajjidirir from unsplash

There has been recent substantial interest in extracting sub-visual features from medical images for improved disease characterization compared to what might be achievable via visual inspection alone. Features such as… Click to show full abstract

There has been recent substantial interest in extracting sub-visual features from medical images for improved disease characterization compared to what might be achievable via visual inspection alone. Features such as Haralick and Gabor can provide a multi-scale representation of the original image by extracting measurements across differently sized neighborhoods. While these multi-scale features are effective, on large-scale digital pathological images, the process of extracting these features is computationally expensive. Moreover for different problems, different scales and neighborhood sizes may be more or less important and thus a large number of features extracted might end up being redundant. In this paper, we present a Discriminative Scale learning (DiScrn) approach that attempts to automatically identify the distinctive scales at which features are able to best separate cancerous from non-cancerous regions on both radiologic and digital pathology tissue images. To evaluate the efficacy of our approach, our approach was employed to detect presence and extent of prostate cancer on a total of 60 MRI and digitized histopathology images. Compared to a multi-scale feature analysis approach invoking features across all scales, DiScrn achieved 66% computational efficiency while also achieving comparable or even better classifier performance.

Keywords: discriminative scale; prostate cancer; scale learning; approach; learning discrn; scale

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.