LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser-Generated Proton Beams for High-Precision Ultra-Fast Crystal Synthesis

Photo from wikipedia

We present a method for the synthesis of micro-crystals and micro-structured surfaces using laser-accelerated protons. In this method, a solid surface material having a low melting temperature is irradiated with… Click to show full abstract

We present a method for the synthesis of micro-crystals and micro-structured surfaces using laser-accelerated protons. In this method, a solid surface material having a low melting temperature is irradiated with very-short laser-generated protons, provoking in the ablation process thermodynamic conditions that are between the boiling and the critical point. The intense and very quick proton energy deposition (in the ns range) induces an explosive boiling and produces microcrystals that nucleate in a plasma plume composed by ions and atoms detached from the laser-irradiated surface. The synthesized particles in the plasma plume are then deposited onto a cold neighboring, non-irradiated, solid secondary surface. We experimentally verify the synthesizing methods by depositing low-melting-material microcrystals - such as gold - onto nearby silver surfaces and modeling the proton/matter interaction via a Monte Carlo code, confirming that we are in the above described thermodynamic conditions. Morphological and crystallinity measurements indicate the formation of gold octahedral crystals with dimensions around 1.2 μm, uniformly distributed onto a silver surface with dimensions in the tens of mm2. This laser-accelerated particle based synthesis method paves the way for the development of new material synthesis using ultrashort laser-accelerated particle beams.

Keywords: laser; surface; generated proton; laser accelerated; laser generated; synthesis

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.