LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Li2MnO3 domain size and current rate dependence on the electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathode material

Photo from wikipedia

Layered-layered composite oxides of the form xLi2MnO3·(1−x) LiMO2 (M = Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g)… Click to show full abstract

Layered-layered composite oxides of the form xLi2MnO3·(1−x) LiMO2 (M = Mn, Co, Ni) have received much attention as candidate cathode materials for lithium ion batteries due to their high specific capacity (>250mAh/g) and wide operating voltage range of 2.0–4.8 V. However, the cathode materials of this class generally exhibit large capacity fade upon cycling and poor rate performance caused by structural transformations. Since electrochemical properties of the cathode materials are strongly dependent on their structural characteristics, the roles of these components in 0.5Li2MnO3·0.5LiCoO2 cathode material was the focus of this work. In this work, the influences of Li2MnO3 domain size and current rate on electrochemical properties of 0.5Li2MnO3·0.5LiCoO2 cathodes were studied. Experimental results obtained showed that a large domain size provided higher cycling stability. Furthermore, fast cycling rate was also found to help reduce possible structural changes from layered structure to spinel structure that takes place in continuous cycling.

Keywords: electrochemical properties; cathode; domain size; rate; 5li2mno3 5licoo2

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.