LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study

Photo by rhfhanssen from unsplash

The realistic shapes of N doped graphene nanoribbons (GNRs) can be realized by considering nearly zigzag-edged (NZE) imperfections and pyridine defects (3NV). The paper focuses on NZE-GNRs with 3NV that… Click to show full abstract

The realistic shapes of N doped graphene nanoribbons (GNRs) can be realized by considering nearly zigzag-edged (NZE) imperfections and pyridine defects (3NV). The paper focuses on NZE-GNRs with 3NV that is populated by Scandium abbreviated as Sc/NZE-3NVGNRs. Systematic calculations have clarified roles of the nano-shapes of NZE-3NVGNRs in its formation, energetics, stability and electron states functionalized with Sc using density functional theory (DFT) formalisms. According to DFT calculations, the magnitude of the spin that is attributed to the rise of magnetic order is closely linked to the altered shape of the ribbon edges. Also, calculations show that the stability of Sc functionalization at the 3NV and NZE site is thermodynamically stable and is dictated by a strong binding energy (BE). The magnitude of the BE is enhanced when the zigzag edge is short or the ribbon width is narrow, suggesting a reduced clustering of Sc atoms over the Sc-doped NZE-3NVGNRs. Results also show that as the length of the zigzag edge in Sc/NZE-3NVGNRs increases it creates considerable distortion on the appearance of the structure. Finally, the Sc/NZE-3NVGNRs as a potential candidate for hydrogen storage was evaluated and it was found that it could adsorb multiple hydrogen molecules.

Keywords: density functional; hydrogen; nze 3nvgnrs; nearly zigzag; zigzag edged; functional theory

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.