LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Live Cell Imaging Reveals pH Oscillations in Saccharomyces cerevisiae During Metabolic Transitions

Photo from wikipedia

Addition of glucose to starved Saccharomyces cerevisiae initiates collective NADH dynamics termed glycolytic oscillations. Numerous questions remain about the extent to which single cells can oscillate, if oscillations occur in… Click to show full abstract

Addition of glucose to starved Saccharomyces cerevisiae initiates collective NADH dynamics termed glycolytic oscillations. Numerous questions remain about the extent to which single cells can oscillate, if oscillations occur in natural conditions, and potential physiological consequences of oscillations. In this paper, we report sustained glycolytic oscillations in single cells without the need for cyanide. Glucose addition to immobilized cells induced pH oscillations that could be imaged with fluorescent sensors. A population of cells had oscillations that were heterogeneous in frequency, start time, stop time, duration and amplitude. These changes in cytoplasmic pH were necessary and sufficient to drive changes in NADH. Oscillators had lower mitochondrial membrane potentials and budded more slowly than non-oscillators. We also uncovered a new type of oscillation during recovery from H2O2 challenge. Our data show that pH in S. cerevisiae changes over several time scales, and that imaging pH offers a new way to measure glycolytic oscillations on individual cells.

Keywords: saccharomyces cerevisiae; cell imaging; live cell; reveals oscillations; glycolytic oscillations; imaging reveals

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.