LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hyperoxidation of ether-linked phospholipids accelerates neutrophil extracellular trap formation

Photo from wikipedia

Because neutrophil extracellular trap (NET) formation is involved in the pathology of a wide variety of diseases, NET-regulating compounds are expected to be useful for the therapies of these diseases.… Click to show full abstract

Because neutrophil extracellular trap (NET) formation is involved in the pathology of a wide variety of diseases, NET-regulating compounds are expected to be useful for the therapies of these diseases. In this study, we identified sulfasalazine (SSZ) as a potent enhancer of NET formation both in vitro and in vivo. Although SSZ did not increase the amount of ROS generated, it accelerated the generation of ether-linked oxidized phospholipids, such as PE (18;1e/15-HETE) and PC (16;0e/13-HODE). Trolox, but not 2-ME, effectively suppressed lipid oxidation and NET formation that were induced by SSZ. SSZ is known as a potent inducer of ferroptosis in cancer cells by inhibiting xCT, a component of the cystine transporter. However, we found that SSZ accelerated NET formation in an xCT-independent manner. Structure-activity relationship studies revealed that the sulfapyridine moiety of SSZ plays a central role in enhancing NET formation. Furthermore, we found that two additional sulfonamide and sulfone derivatives possess NET-inducing activity by accelerating lipid oxidation. These results indicate that the hyperoxidation of ether-linked phospholipids is a key mechanism for accelerating NET formation.

Keywords: neutrophil extracellular; extracellular trap; ether linked; hyperoxidation ether; formation; net formation

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.