LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Origin of methane-rich natural gas at the West Pacific convergent plate boundary

Photo from wikipedia

Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between… Click to show full abstract

Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH4/C2H6 and CH4/3He ratios. In the Akita-Niigata region – which corresponds to the slope stretching from the volcanic-arc to the back-arc –a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH4/C2H6 and CH4/3He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH4/C2H6 ratios and low CH4/3He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH4/C2H6 ratios and the lowest CH4/3He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested.

Keywords: carbon; ch4; methane; plate boundary; origin methane; methane rich

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.