It is challenging to determine the ground states of heterofullerenes due to the numerous isomers. Taking the C60-nBn heterofullerenes (1 ≤ n ≤ 4) as an example, our first-principles calculations with the isomer enumeration… Click to show full abstract
It is challenging to determine the ground states of heterofullerenes due to the numerous isomers. Taking the C60-nBn heterofullerenes (1 ≤ n ≤ 4) as an example, our first-principles calculations with the isomer enumeration present the most stable structure of C57B3, which is energetically favored by 0.73 eV than the reported counterpart. It was difficult to conduct the enumeration for the isomers with n beyond 4 because of the expensive first-principle calculations. Here, we propose a nomenclature to enhance structural recognition and adopt an extended cluster expansion to describe the structural stabilities, in which the energies of the heterofullerenes with various concentrations are predicted by linear combination of the multi-body interactions. Unlike the conventional cluster expansion, the interaction parameters are derived from the enumeration of C60-nBn (n = 1~4), where there are only 4 coefficients to be fitted as a function of composition for the consideration of local bonding. The cross-validation scores are 1~2 meV per atom for both C55B5 and C54B6, ensuring the ground states obtained from our model are in line with the first-principles results. With the help of the structural recognition, the extended cluster expansion could be further applied to other binary systems as an effective complement to the first-principle calculations.
               
Click one of the above tabs to view related content.