Deep-sea hydrogenetic ferromanganese crusts are both potential polymetallic resources and records of long-term environmental changes. For palaeoceanographic studies, it is important to construct a detailed and reliable chronological framework. Here,… Click to show full abstract
Deep-sea hydrogenetic ferromanganese crusts are both potential polymetallic resources and records of long-term environmental changes. For palaeoceanographic studies, it is important to construct a detailed and reliable chronological framework. Here, we report the results of a detailed magnetostratigraphic and rock magnetic study of four hydrogenetic Fe-Mn crusts from the Pacific Ocean (PO-01), South China Sea (SCS-01, SCS-02) and Indian Ocean (IO-01). Two groups of characteristic remanent magnetization directions were defined with nearly antipodal normal and reversed polarities for samples PO-01, SCS-01 and SCS-02, indicating a primary record of the Earth’s magnetic field. The magnetostratigraphic framework, established via correlation with the Geomagnetic Polarity Time Scale 2012, implies growth rates of 4.82 mm/Ma, 4.95 mm/Ma, 4.48 mm/Ma and 11.28 mm/Ma for samples PO-01, SCS-01, SCS-02 and IO-01, respectively. Rock magnetic measurements revealed that the Fe-Mn crust samples from the Pacific Ocean and Indian Ocean were dominated by low coercivity, non-interacting, single-domain (SD) magnetite particles, whereas the South China Sea samples were dominated by SD/pseudo-single-domain (PSD) particles. Multidomain (MD) magnetite may also be present in all samples.
               
Click one of the above tabs to view related content.