LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nutrient resorption or accumulation of desert plants with contrasting sodium regulation strategies

Photo by m______________e from unsplash

Desert plants are thought to rely more heavily on nutrient resorption due to the infertile soil. However, little is known regarding the phylogenetic effects on this traits, specifically for halophytes.… Click to show full abstract

Desert plants are thought to rely more heavily on nutrient resorption due to the infertile soil. However, little is known regarding the phylogenetic effects on this traits, specifically for halophytes. Here we determined contents of nitrogen (N), phosphorus (P), potassium (K), sodium (Na), calcium (Ca) and magnesium (Mg) in 36 desert plants in a hyper-arid environment. The patterns of resorption or accumulation of the six elements were compared among plant groups with diverse leaf Na regulation strategies: i.e., euhalophytes (Eu), secretohalophytes (Se), pseudohalophytes (Ps) and glycophytes (Gl). Overall, N, P, K presented strict resorption across all groups, but no more efficient than global estimations. Ca and Mg tended to be resorbed less or accumulated during leaf senescence. Significant phylogenetic signal of both leaf Na content and plant group implies the pivotal role of Na regulation in the adaptation of plants to desert environment. Resorption proficiency, rather than resorption efficiency, is more phylogenetically conservative and more relevant to leaf functional traits.

Keywords: desert plants; nutrient resorption; resorption accumulation; resorption; regulation

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.