LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Micromagnetic Protocol for Qualitatively Predicting Stochastic Domain Wall Pinning

Photo by madhatterzone from unsplash

Understanding dynamically-induced stochastic switching effects in soft ferromagnetic nanowires is a critical challenge for realising spintronic devices with deterministic switching behaviour. Here, we present a micromagnetic simulation protocol for qualitatively… Click to show full abstract

Understanding dynamically-induced stochastic switching effects in soft ferromagnetic nanowires is a critical challenge for realising spintronic devices with deterministic switching behaviour. Here, we present a micromagnetic simulation protocol for qualitatively predicting dynamic stochastic domain wall (DW) pinning/depinning at artificial defect sites in Ni80Fe20 nanowires, and demonstrate its abilities by correlating its predictions with the results of focused magneto-optic Kerr effect measurements. We analyse DW pinning configurations in both thin nanowires (t = 10 nm) and thick nanowires (t = 40 nm) with both single (asymmetric) and double (symmetric) notches, showing how our approach provides understanding of the complex DW-defect interactions at the heart of stochastic pinning behaviours. Key results explained by our model include the total suppression of stochastic pinning at single notches in thick nanowires and the intrinsic stochasticity of pinning at double notches, despite their apparent insensitivity to DW chirality.

Keywords: wall pinning; stochastic domain; qualitatively predicting; domain wall; protocol qualitatively

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.