LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea

Photo by elisa_ventur from unsplash

Tonoplast H+-pyrophosphatases (VPs) mediate vacuolar Na+ sequestration, a process important for salt tolerance of plants. The function of VP in the highly drought- and salt-tolerant perennial Iris lactea under salt… Click to show full abstract

Tonoplast H+-pyrophosphatases (VPs) mediate vacuolar Na+ sequestration, a process important for salt tolerance of plants. The function of VP in the highly drought- and salt-tolerant perennial Iris lactea under salt stress is unclear. Here, we isolated IlVP from I. lactea and investigated its function in transgenic tobacco. IlVP was found to comprise 771 amino acid residues and showed 88% similarity with Arabidopsis AtVP1. IlVP was mainly expressed in shoots and was up-regulated by salt stress. Overexpression of IlVP enhanced growth of transgenic tobacco plants compared with wild-type (WT) plants exposed to salt stress. Transgenic plants accumulated higher quantities of Na+ and K+ in leaves, stems, and roots under salt stress, which caused higher leaf relative water content and decreased cell membrane damage compared with WT plants. Overall, IlVP encoding a tonoplast H+-pyrophosphatase can reduce Na+ toxicity in plant cells through increased sequestration of ions into vacuoles by enhanced H+-pyrophosphatase activity.

Keywords: lactea; salt stress; pyrophosphatase; iris lactea

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.