LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of a major QTL for manganese accumulation in rice grain

Photo by khlebnikovayulia from unsplash

Some diets lack sufficient manganese (Mn), an essential mineral. Increasing Mn in grain by biofortification could prevent Mn deficiency, but may increase levels of the toxic element cadmium (Cd). Here,… Click to show full abstract

Some diets lack sufficient manganese (Mn), an essential mineral. Increasing Mn in grain by biofortification could prevent Mn deficiency, but may increase levels of the toxic element cadmium (Cd). Here, we investigated Mn in rice (Oryza sativa) grains in recombinant inbred lines (RILs) from the cross of 93–11 (low grain Mn) with PA64s (high grain Mn). Quantitative trait locus (QTL) analysis to identify loci controlling grain Mn identified a major QTL, qGMN7.1, on the short arm of chromosome 7; qGMN7.1 explained 15.6% and 22.8% of the phenotypic variation in the RIL populations grown in two distinct environments. We validated the QTL with a chromosome segment substitution line (CSSL), CSSL-qGMN7.1, in the 93–11 background harboring qGMN7.1 from PA64s. Compared to 93–11, CSSL-qGMN7.1 grain had increased Mn and decreased Cd concentrations; CSSL-qGMN7.1 roots also showed enhanced Mn uptake. Fine mapping delimited qGMN7.1 to a 49.3-kb region containing OsNRAMP5, a gene responsible for Mn and Cd uptake. Sequence variations in the OsNRAMP5 promoter caused changes in its transcript level, and in grain Mn levels. Our study thus cloned a major QTL for grain Mn concentration in rice, and identified materials for breeding rice for high Mn and low Cd concentrations in the grain.

Keywords: cssl qgmn7; grain; major qtl; rice

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.