LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer

Photo by ferviera06 from unsplash

Directed voltage-controlled assembly and disassembly of plasmonic nanoparticles (NPs) at electrified solid–electrolyte interfaces (SEI) offer novel opportunities for the creation of tuneable optical devices. We apply this concept to propose… Click to show full abstract

Directed voltage-controlled assembly and disassembly of plasmonic nanoparticles (NPs) at electrified solid–electrolyte interfaces (SEI) offer novel opportunities for the creation of tuneable optical devices. We apply this concept to propose a fast electrotuneable, NP-based Fabry–Perot (FP) interferometer, comprising two parallel transparent electrodes in aqueous electrolyte, which form the polarizable SEI for directed assembly–disassembly of negatively charged NPs. An FP cavity between two reflective NP-monolayers assembled at such interfaces can be formed or deconstructed under positive or negative polarization of the electrodes, respectively. The inter-NP spacing may be tuned via applied potential. Since the intensity, wavelength, and linewidth of the reflectivity peak depend on the NP packing density, the transmission spectrum of the system can thus be varied. A detailed theoretical model of the system’s optical response is presented, which shows excellent agreement with full-wave simulations. The tuning of the peak transmission wavelength and linewidth is investigated in detail. Design guidelines for such NP-based FP systems are established, where transmission characteristics can be electrotuned in-situ, without mechanically altering the cavity length.

Keywords: perot interferometer; towards electrotuneable; fabry perot

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.