LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Locating multiple diffusion sources in time varying networks from sparse observations

Photo by jontyson from unsplash

Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem.… Click to show full abstract

Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

Keywords: time varying; sources time; varying networks; diffusion sources

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.