LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient strategy for introducing large and multiple changes in plasmid DNA

Photo from wikipedia

While the QuikChange site-directed mutagenesis method and its later modifications are extremely useful and simple, they suffer from several drawbacks. Here, we propose a new method, named LFEAP mutagenesis (Ligation… Click to show full abstract

While the QuikChange site-directed mutagenesis method and its later modifications are extremely useful and simple, they suffer from several drawbacks. Here, we propose a new method, named LFEAP mutagenesis (Ligation of Fragment Ends After PCR) for creating various mutations in plasmid by leveraging three existing concepts: inverse PCR, single primer PCR, and sticky-end assembly. The first inverse PCR on the target plasmid yielded linearized DNA fragments with mutagenic ends, and a second single primer PCR resulted in complementary single-stranded DNA fragments with the addition of overhangs at the 5′ end of each strand. The resulting single strands were then annealed to produce double-stranded DNA with free 5′ single-stranded DNA tails. These products with compatible sticky ends were efficiently assembled into a circular, mutagenized plasmid. With this strategy, multiple simultaneous changes (up to 15) and mutations in large plasmids (up to 50 kb) were achieved with high efficiency and fidelity. LFEAP mutagenesis is a versatile method that offers significant advantages for introducing large and multiple changes in plasmid DNA.

Keywords: introducing large; multiple changes; dna; large multiple; plasmid dna; changes plasmid

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.