Terrestrial cosmogenic nuclide concentrations of detrital minerals yield catchment-wide rates at which hillslopes erode. These estimates are commonly used to infer millennial scale denudation patterns and to identify the main… Click to show full abstract
Terrestrial cosmogenic nuclide concentrations of detrital minerals yield catchment-wide rates at which hillslopes erode. These estimates are commonly used to infer millennial scale denudation patterns and to identify the main controls on mass-balance and landscape evolution at orogenic scale. The same approach can be applied to minerals preserved in stratigraphic records of rivers, although extracting reliable paleo-denudation rates from Ma-old archives can be limited by the target nuclide’s half-life and by exposure to cosmic radiations after deposition. Slowly eroding landscapes, however, are characterized by the highest cosmogenic radionuclide concentrations; a condition that potentially allows pushing the method’s limits further back in time, provided that independent constraints on the geological evolution are available. Here, we report 13–10 million-year-old paleo-denudation rates from northernmost Chile, the oldest 10Be-inferred rates ever reported. We find that at 13–10 Ma the western Andean Altiplano has been eroding at 1–10 m/Ma, consistent with modern paces in the same setting, and it experienced a period with rates above 10 m/Ma at ~11 Ma. We suggest that the background tectono-geomorphic state of the western margin of the Altiplano has remained stable since the mid-Miocene, whereas intensified runoff since ~11 Ma might explain the transient increase in denudation.
               
Click one of the above tabs to view related content.