Signal crosstalk between distinct G protein-coupled receptors (GPCRs) is one mechanism that underlies pleiotropic signalling. Such crosstalk is also pertinent for GPCRs activated by gonadotrophic hormones; follicle-stimulating hormone (FSH) and… Click to show full abstract
Signal crosstalk between distinct G protein-coupled receptors (GPCRs) is one mechanism that underlies pleiotropic signalling. Such crosstalk is also pertinent for GPCRs activated by gonadotrophic hormones; follicle-stimulating hormone (FSH) and luteinising hormone (LH), with specific relevance to female reproduction. Here, we demonstrate that gonadotrophin receptor crosstalk alters LH-induced Gαq/11-calcium profiles. LH-induced calcium signals in both heterologous and primary human granulosa cells were prolonged by FSHR coexpression via influx of extracellular calcium in a receptor specific manner. LHR/FSHR crosstalk involves Gαq/11 activation as a Gαq/11 inhibitor abolished calcium responses. Interestingly, the enhanced LH-mediated calcium signalling induced by FSHR co-expression was dependent on intracellular calcium store release and involved Gβγ. Biophysical analysis of receptor and Gαq interactions indicated that ligand-dependent association between LHR and Gαq was rearranged in the presence of FSHR, enabling FSHR to closely associate with Gαq following LHR activation. This suggests that crosstalk may occur via close associations as heteromers. Super-resolution imaging revealed that LHR and FSHR formed constitutive heteromers at the plasma membrane. Intriguingly, the ratio of LHR:FSHR in heterotetramers was specifically altered following LH treatment. We propose that functionally significant FSHR/LHR crosstalk reprograms LH-mediated calcium signalling at the interface of receptor-G protein via formation of asymmetric complexes.
               
Click one of the above tabs to view related content.