LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Linear magnetoresistivity in layered semimetallic CaAl2Si2

Photo by ericmuhr from unsplash

According to an earlier Abrikosov model, a positive, nonsaturating, linear magnetoresistivity (LMR) is expected in clean, low-carrier-density metals when measured at very low temperatures and under very high magnetic fields.… Click to show full abstract

According to an earlier Abrikosov model, a positive, nonsaturating, linear magnetoresistivity (LMR) is expected in clean, low-carrier-density metals when measured at very low temperatures and under very high magnetic fields. Recently, a vast class of materials were shown to exhibit extraordinary high LMR but at conditions that deviate sharply from the above-mentioned Abrikosov-type conditions. Such deviations are often considered within either classical Parish-Littlewood scenario of random-conductivity network or within a quantum scenario of small-effective mass or low carriers at tiny pockets neighboring the Fermi surface. This work reports on a manifestation of novel example of a robust, but moderate, LMR up to ∼100 K in the diamagnetic, layered, compensated, semimetallic CaAl2Si2. We carried out extensive and systematic characterization of baric and thermal evolution of LMR together with first-principles electronic structure calculations based on density functional theory. Our analyses revealed strong correlations among the main parameters of LMR and, in addition, a presence of various transition/crossover events based on which a P − T phase diagram was constructed. We discuss whether CaAl2Si2 can be classified as a quantum Abrikosov or classical Parish-Littlewood LMR system.

Keywords: caal2si2; magnetoresistivity layered; linear magnetoresistivity; lmr; semimetallic caal2si2

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.