LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tracing ultrahigh-pressure metamorphism at the catchment scale

Photo by charlesdeluvio from unsplash

Finding traces of ultrahigh-pressure (UHP) metamorphism in the geological record has huge implications for unravelling Earth’s geodynamic evolution, such as the onset of deep subduction. Usually, UHP rocks are identified… Click to show full abstract

Finding traces of ultrahigh-pressure (UHP) metamorphism in the geological record has huge implications for unravelling Earth’s geodynamic evolution, such as the onset of deep subduction. Usually, UHP rocks are identified by specific mineral inclusions like coesite and characteristic petrographic features resulting from its (partial) transformation to the lower-pressure polymorph quartz in thin sections of crystalline rocks. This approach relies on very small sample size and is thus limited to a few points within large regions. Here we present the first findings of coesite inclusions in detrital mineral grains. The intact monomineralic inclusions were detected in garnets from a modern sand sample from the Western Gneiss Region, SW Norway. They represent the first known intact monomineralic coesite inclusions in the Western Gneiss Region, and their presence is suggested to indicate the erosion of UHP rocks in the sampled catchment area. The novel approach introduced here allows for tracing UHP metamorphic rocks and their erosional products at the catchment scale instead of being limited to outcrops of crystalline rocks. It opens new avenues for the prospective exploration of UHP metamorphism in Earth’s geological record.

Keywords: ultrahigh pressure; metamorphism; tracing ultrahigh; catchment scale; pressure

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.