LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatiotemporal Airy Ince–Gaussian wave packets in strongly nonlocal nonlinear media

Photo by bagasvg from unsplash

The self-accelerating Airy Ince–Gaussian (AiIG) and Airy helical Ince–Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the… Click to show full abstract

The self-accelerating Airy Ince–Gaussian (AiIG) and Airy helical Ince–Gaussian (AihIG) wave packets in strongly nonlocal nonlinear media (SNNM) are obtained by solving the strongly nonlocal nonlinear Schrödinger equation. For the first time, the propagation properties of three dimensional localized AiIG and AihIG breathers and solitons in the SNNM are demonstrated, these spatiotemporal wave packets maintain the self-accelerating and approximately non-dispersion properties in temporal dimension, periodically oscillating (breather state) or steady (soliton state) in spatial dimension. In particular, their numerical experiments of spatial intensity distribution, numerical simulations of spatiotemporal distribution, as well as the transverse energy flow and the angular momentum in SNNM are presented. Typical examples of the obtained solutions are based on the ratio between the input power and the critical power, the ellipticity and the strong nonlocality parameter. The comparisons of analytical solutions with numerical simulations and numerical experiments of the AiIG and AihIG optical solitons show that the numerical results agree well with the analytical solutions in the case of strong nonlocality.

Keywords: airy ince; nonlocal nonlinear; wave packets; strongly nonlocal; ince gaussian

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.