LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry

Photo by saboorasif from unsplash

Elaborate modeling study suggests an important role of capillary transit time heterogeneity (CTTH) reduction in brain oxygenation during functional hyperemia. Here, we use optical coherence tomography angiography (OCTA) capillary velocimetry… Click to show full abstract

Elaborate modeling study suggests an important role of capillary transit time heterogeneity (CTTH) reduction in brain oxygenation during functional hyperemia. Here, we use optical coherence tomography angiography (OCTA) capillary velocimetry to probe blood flow dynamics in cerebral capillary beds and validate the change in CTTH during functional activation in an in vivo rodent model. Through evaluating flow dynamics and consequent transit time parameters from thousands of capillary vessels within three-dimensional (3-D) tissue volume upon hindpaw electrical stimulation, we observe reductions in both capillary mean transit time (MTT) (9.8% ± 2.2) and CTTH (5.9% ± 1.4) in the hindlimb somatosensory cortex (HLS1). Additionally, capillary flow pattern modification is observed with a significant difference (p < 0.05) between the HLS1 and non-activated cortex regions. These quantitative findings reveal a localized microcirculatory adjustment during functional activation, consistent with previous studies, and support the critical contribution of capillary flow homogenization to brain oxygenation. The OCTA velocimetry is a useful tool to image microcirculatory dynamics in vivo using animal models, enabling a more comprehensive understanding as to hemodynamic-metabolic coupling.

Keywords: optical coherence; functional activation; velocimetry; capillary flow; coherence tomography

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.