LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impedance-based analysis of Natural Killer cell stimulation

Photo from wikipedia

The use of impedance-based label free cell analysis is increasingly popular and has many different applications. Here, we report that a real-time cell analyzer (RTCA) can be used to study… Click to show full abstract

The use of impedance-based label free cell analysis is increasingly popular and has many different applications. Here, we report that a real-time cell analyzer (RTCA) can be used to study the stimulation of Natural Killer (NK) cells. Engagement of NK cells via plate-bound antibodies directed against different activating surface receptors could be measured in real time using the label-free detection of impedance. The change in impedance was dependent on early signal transduction events in the NK cells as it was blocked by inhibitors of Src-family kinases and by inhibiting actin polymerization. While CD16 was the only receptor that could induce a strong change in impedance in primary NK cells, several activating receptors induced changes in impedance in expanded NK cells. Using PBMCs we could detect T cell receptor-mediated T cell activation and CD16-mediated NK cell activation in the same sample. Performing a dose-response analysis for the Src-family kinases inhibitor PP1 we show that T cells are more sensitive to inhibition compared to NK cells. Our data demonstrate that the RTCA can be used to detect physiological activation events in NK cells in a label-free and real-time fashion.

Keywords: stimulation; analysis; natural killer; impedance; cell; impedance based

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.