LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure-based discovery of mPGES-1 inhibitors suitable for preclinical testing in wild-type mice as a new generation of anti-inflammatory drugs

Photo from wikipedia

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs, and various inhibitors have been reported in… Click to show full abstract

Human mPGES-1 is recognized as a promising target for next generation of anti-inflammatory drugs without the side effects of currently available anti-inflammatory drugs, and various inhibitors have been reported in the literature. However, none of the reported potent inhibitors of human mPGES-1 has shown to be also a potent inhibitor of mouse or rat mPGES-1, which prevents using the well-established mouse/rat models of inflammation-related diseases for preclinical studies. Hence, despite of extensive efforts to design and discover various human mPGES-1 inhibitors, the promise of mPGES-1 as a target for the next generation of anti-inflammatory drugs has never been demonstrated in any wild-type mouse/rat model using an mPGES-1 inhibitor. Here we report discovery of a novel type of selective mPGES-1 inhibitors potent for both human and mouse mPGES-1 enzymes through structure-based rational design. Based on in vivo studies using wild-type mice, the lead compound is indeed non-toxic, orally bioavailable, and more potent in decreasing the PGE2 (an inflammatory marker) levels compared to the currently available drug celecoxib. This is the first demonstration in wild-type mice that mPGES-1 is truly a promising target for the next generation of anti-inflammatory drugs.

Keywords: anti inflammatory; generation anti; mpges inhibitors; wild type; inflammatory drugs

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.