LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Metamaterial Absorber using Eight-Resistive-Arm Cell for Simultaneous Broadband and Wide-Incidence-Angle Absorption

Photo by pawelkadysz from unsplash

In this paper, a broadband metamaterial (MM) absorber is presented for X-band applications. A novel eight-resistive-arm (ERA) cell is proposed as an MM unit cell to achieve both broadband absorption… Click to show full abstract

In this paper, a broadband metamaterial (MM) absorber is presented for X-band applications. A novel eight-resistive-arm (ERA) cell is proposed as an MM unit cell to achieve both broadband absorption and wide incidence angles. The proposed ERA cell is designed using equivalent circuit model and full-wave analysis in order to achieve an absorption ratio higher than 90% in the range of 8.2–13.4 GHz. The experimental results indicate that the absorptivity was greater than 90% in the range of 8–13 GHz for all polarization angles under normal incidence. Under oblique incidence, the measured absorptivity was greater than 90% in the range of 8.2–12.2 GHz up to 60° and in the range of 9.2–12 GHz up to 65° in the transverse electric (TE) mode. In the transverse magnetic (TM) mode, the measured absorptivity was higher than 90% in the range of 9.5–12.4 GHz when the incidence angle was varied from 0° to 60° and remaining a 90% absorption bandwidth in the range of 10–12 GHz up to 65°. Compared to other broadband MM absorbers, the proposed MM absorber exhibited the widest incidence angles in both TE and TM modes.

Keywords: incidence; absorption; range ghz; broadband; cell

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.