In this study, a high density carbon block without binder was manufactured by mesocarbon microbeads (MCMB) from coal tar pitch. To develop the high density carbon block without a binder,… Click to show full abstract
In this study, a high density carbon block without binder was manufactured by mesocarbon microbeads (MCMB) from coal tar pitch. To develop the high density carbon block without a binder, MCMBs were oxidized at different levels of temperature. To verify the effect of oxygen content in the carbonized carbon block (CCB), an elementary analysis (EA) and X-ray photoelectron spectroscopy (XPS) were performed. The morphological and mechanical properties of the CCBs were investigated by using scanning electron microscopy (SEM), a shore hardness test, and a flexural strength evaluation. The results revealed that the oxygen content increased with stabilization temperature and the physical properties of the CCBs were considerably improved via oxidative stabilization. Small cracks between MCMB particles were observed in the CCBs that were stabilized over 250 °C. From the results of this study, the CCB from MCMBs stabilized at 200 °C for 1 h showed optimum mechanical properties and high density.
               
Click one of the above tabs to view related content.