LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of quantitation method for glycated aminophospholipids at the molecular species level in powdered milk and powdered buttermilk

Photo from wikipedia

The Maillard reaction is a nonenzymatic glycation reaction between a reducing sugar and a free amino group, known to naturally occur during heat processing of food. In this study, we… Click to show full abstract

The Maillard reaction is a nonenzymatic glycation reaction between a reducing sugar and a free amino group, known to naturally occur during heat processing of food. In this study, we especially focused on phosphatidylethanolamine (PE)-linked Amadori products (Amadori-PE) in powdered milk, since the analysis of these products at the molecular species level has not yet been evaluated. Analysis of Amadori-PE was conducted by using liquid chromatography-tandem mass spectrometry in three different modes. The main Amadori-PE species in a powdered milk sample were first identified as 34:1, 36:1, 36:2 and 36:3 in the total ion current mode. Additionally, by using the characteristic product ions observed in the presence of sodium, we quantified the main Amadori-PE species in the multiple reaction monitoring mode, and evaluated their total concentrations in the precursor ion scan (PIS) mode for the first time. Powdered milk contained much Amadori-PE with concentrations ranging from 4.3 to 8239 mg/100 g, quantified by the PIS mode. The newly developed methods represent powerful tools for detailed analysis of glycated lipids including Amadori-PE in powdered milk, which may further be applied to research relating to infant food and nutrition.

Keywords: milk; mode; development quantitation; powdered milk; molecular species; species level

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.