LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The evolution of phase constitution and microstructure in iron-rich 2:17-type Sm-Co magnets with high magnetic performance

Photo from wikipedia

Iron-rich 2:17-type Sm-Co magnets are important for their potential to achieve high coercivity and maximum magnetic energy product. But the evolution of phase structure, which determines magnetic properties, remains an… Click to show full abstract

Iron-rich 2:17-type Sm-Co magnets are important for their potential to achieve high coercivity and maximum magnetic energy product. But the evolution of phase structure, which determines magnetic properties, remains an unsolved issue. In this study, the phase constitution and microstructure of solution-treated 2:17-type Sm-Co alloys are studied. The increase of Fe content promotes the ordering transformation from the 1:7H phase to partially ordered 2:17R and lamellar Zr-rich 1:3R phase. This ordering transformation is mainly due to the competitive atoms occupation of Zr, Fe and Sm in the 1:7H phase. To ease this competition, we modify Sm content in iron-rich 2:17-type Sm-Co magnets. Different solution precursors and corresponding cellular structures are observed. Solution precursor with 1:7H, partially ordered 2:17R, 2:17H and 1:3R phase evolves into uneven and incomplete cellular structures, while solution precursor with partially ordered 2:17R phase forms larger cell size with less lamellar phase, thus poor coercivity and magnetic energy product. However, solution precursors with single 1:7H phase evolve into uniform cellular structures and perform high coercivity and magnetic energy product. Our results indicate if a single 1:7H phase could be obtained in solution-treated 2:17-type Sm-Co magnets with higher iron content, much higher magnetic properties could be achieved.

Keywords: phase; iron rich; type magnets; solution; rich type

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.