To date, no methodology has been described for predicting the age of Aedes albopictus Skuse mosquitoes, commonly known as Asian tiger mosquitoes. In this study, we report the potential of… Click to show full abstract
To date, no methodology has been described for predicting the age of Aedes albopictus Skuse mosquitoes, commonly known as Asian tiger mosquitoes. In this study, we report the potential of near-infrared spectroscopy (NIRS) technique for characterizing the age of female laboratory reared Ae. albopictus. Using leave-one-out cross-validation analysis on a training set, laboratory reared mosquitoes preserved in RNAlater for up to a month were assessed at 1, 3, 7, 9, 13, 16, 20 and 25 days post emergence. Mosquitoes (N = 322) were differentiated into two age classes (< or ≥ 7 days) with 93% accuracy, into three age classes (<7, 7–13 and >13 days old) with 76% accuracy, and on a continuous age scale to within ±3 days of their actual average age. Similarly, models predicted mosquitoes (N = 146) excluded from the training model with 94% and 71% accuracy to the two and the three age groups, respectively. We show for the first time that NIRS, with an improved spectrometer and fibre configuration, can be used to predict the age of laboratory reared female Ae. albopictus. Characterization of the age of Ae. albopictus populations is crucial for determining the efficacy of vector control interventions that target their survival.
               
Click one of the above tabs to view related content.