LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computing Resonant Inelastic X-Ray Scattering Spectra Using The Density Matrix Renormalization Group Method

Photo from wikipedia

We present a method for computing the resonant inelastic x-ray scattering (RIXS) spectra in one-dimensional systems using the density matrix renormalization group (DMRG) method. By using DMRG to address this… Click to show full abstract

We present a method for computing the resonant inelastic x-ray scattering (RIXS) spectra in one-dimensional systems using the density matrix renormalization group (DMRG) method. By using DMRG to address this problem, we shift the computational bottleneck from the memory requirements associated with exact diagonalization (ED) calculations to the computational time associated with the DMRG algorithm. This approach is then used to obtain RIXS spectra on cluster sizes well beyond state-of-the-art ED techniques. Using this new procedure, we compute the low-energy magnetic excitations observed in Cu L-edge RIXS for the challenging corner shared CuO4 chains, both for large multi-orbital clusters and downfolded t-J chains. We are able to directly compare results obtained from both models defined in clusters with identical momentum resolution. In the strong coupling limit, we find that the downfolded t-J model captures the main features of the magnetic excitations probed by RIXS only after a uniform scaling of the spectra is made.

Keywords: resonant inelastic; inelastic ray; density matrix; using density; ray scattering; computing resonant

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.