LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zero-shot fMRI decoding with three-dimensional registration based on diffusion tensor imaging

Photo from wikipedia

Functional magnetic resonance imaging (fMRI) acquisitions include a great deal of individual variability. This individuality often generates obstacles to the efficient use of databanks from multiple subjects. Although recent studies… Click to show full abstract

Functional magnetic resonance imaging (fMRI) acquisitions include a great deal of individual variability. This individuality often generates obstacles to the efficient use of databanks from multiple subjects. Although recent studies have suggested that inter-regional connectivity reflects individuality, conventional three-dimensional (3D) registration methods that calibrate inter-subject variability are based on anatomical information about the gray matter shape (e.g., T1-weighted). Here, we present a new registration method focusing more on the white matter structure, which is directly related to the connectivity in the brain, and apply it to subject-transfer brain decoding. Our registration method based on diffusion tensor imaging (DTI) transferred functional maps of each individual to a common anatomical space, where a decoding analysis of multi-voxel patterns was performed. The decoder trained on functional maps from other individuals in the common space showed a transfer decoding accuracy comparable to that of an individual decoder trained on single-subject functional maps. The DTI-based registration allowed more precise transformation of gray matter boundaries than a well-established T1-based method. These results suggest that the DTI-based registration is a promising tool for standardization of the brain functions, and moreover, will allow us to perform ‘zero-shot’ learning of decoders which is profitable in brain machine interface scenes.

Keywords: three dimensional; based diffusion; dimensional registration; tensor imaging; registration; diffusion tensor

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.