LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Entangled Quantum Dynamics of Many-Body Systems using Bohmian Trajectories

Photo by ramaissance from unsplash

Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories… Click to show full abstract

Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simulate quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.

Keywords: entangled quantum; many body; bohmian trajectories; quantum dynamics; mechanics

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.