LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Altering Compliance of a Load Carriage Device in the Medial-Lateral Direction Reduces Peak Forces While Walking

Photo from wikipedia

Altering mechanical compliance in load carriage structures has shown to reduce metabolic cost and accelerative forces of carrying weight. Currently, modifications to load carriage structures have been primarily targeted at… Click to show full abstract

Altering mechanical compliance in load carriage structures has shown to reduce metabolic cost and accelerative forces of carrying weight. Currently, modifications to load carriage structures have been primarily targeted at vertical motion of the carried mass. No study to date has investigated altering load carriage compliance in the medial-lateral direction. We developed a backpack specifically for allowing a carried mass to oscillate in the horizontal direction, giving us the unique opportunity to understand the effects of lateral mass motion on human gait. Previous modelling work has shown that walking economy can be improved through the interaction of a bipedal model with a laterally oscillating walking surface. To test whether a laterally oscillating mass can experimentally improve walking economy, we systematically varied step width above and below the preferred level and compared the effects of carrying an oscillating and fixed mass. Walking with an oscillating mass was found to reduce the accelerative forces of load carriage in both horizontal and vertical directions. However, load eccentricity caused the vertical force component to create a significant bending moment in the frontal plane. Walking with an oscillating mass led to an increase in the metabolic energy expenditure during walking and an increase in positive hip work during stance. The device’s ability to reduce forces experienced by the user, due to load carriage, holds promise. However, the requirement of additional metabolic energy to walk with the device requires future study to improve.

Keywords: direction; mass; load carriage; compliance; carriage

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.