LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel design to screen chlorogenic acid-producing microbial strains from the environment

Photo from wikipedia

The present study aimed to develop a plate-screening method, based on the specific color development of complexes formed between chlorogenic acid, a valuable plant-derived compound, and aluminum (III), to detect… Click to show full abstract

The present study aimed to develop a plate-screening method, based on the specific color development of complexes formed between chlorogenic acid, a valuable plant-derived compound, and aluminum (III), to detect chlorogenic acid-producing microbial strains. Modified media with 0.75 mM aluminum chloride were developed to identify CGA-producing bacteria (based on beef extract agar medium) or fungi (based on the potato dextrose agar medium). Compared with conventional screening, the modified media let to 3.3 times more CGA producers from plants, at 90.9% selective accuracy. Novel chlorogenic acid-biosynthesizing strains included Brevibacillus borstelensis B14, Bacillus amyloliquefaciens B17, Bacillus badius B19, Sphingomonas yabuuchiae N21, Enterobacter tabaci N22, and Lodderomyces elongisporus S216 and P212. Strain S216 produced the highest chlorogenic acid yield (23.39 mg L−1). This study provides a highly efficient and low-cost tool for quick detection and subsequent identification of several newly isolated strains with chlorogenic acid-producing potential.

Keywords: acid; novel design; acid producing; producing microbial; microbial strains; chlorogenic acid

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.