LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intraventricular Vortex Interaction between Transmitral Flow and Paravalvular Leak

Photo from wikipedia

Paravalvular leak (PVL) is a complication of transcatheter aortic valve replacement. Despite its marked clinical impact, no previous study has reported how PVL affects the intraventricular fluid dynamics. This study… Click to show full abstract

Paravalvular leak (PVL) is a complication of transcatheter aortic valve replacement. Despite its marked clinical impact, no previous study has reported how PVL affects the intraventricular fluid dynamics. This study aims to delineate vortex interaction between PVL and transmitral flow and the influence of PVL orifice location on intraventricular fluid dynamics using Echocardiographic Particle Image Velocimetry. Three different conditions of no PVL, anterior PVL and posterior PVL were experimentally studied and clinically compared. Circulation, impulse, kinetic energy (KE) and change in KE (ΔKE) were calculated. As well, vortex formation analyses and streamline description were performed to study vortex interactions. The anterior PVL jet streamed into the LV and interfered with the transmitral flow. Posterior PVL jet formed a large clockwise vortex and collided with transmitral flow, which resulted in flow disturbance. Compared to no PVL condition, average circulation, impulse, KE and ΔKE increased in presence of PVL. In conclusion, we found that PVL jets lead to abnormal vortex formation that interfere with natural advancement of transmitral flow, and negatively affect the LV fluid dynamics parameters. PVL orifice location strongly affects the intraventricular vortex formation, and posterior PVL may have more negative effects compared to anterior PVL.

Keywords: transmitral flow; paravalvular leak; pvl; vortex interaction

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.