LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical control of spin-polarized photocurrent in topological insulator thin films

Photo from wikipedia

Dirac electrons in topological insulators (TIs) provide one possible avenue to achieve control of photocurrents and spin currents without the need to apply external fields by utilizing characteristic spin-momentum locking.… Click to show full abstract

Dirac electrons in topological insulators (TIs) provide one possible avenue to achieve control of photocurrents and spin currents without the need to apply external fields by utilizing characteristic spin-momentum locking. However, for TI crystals with electrodes it is actually difficult to characterize the net flow of spin-polarized photocurrents because of the coexistence of surface carriers and bulk carriers generated by optical excitations. We demonstrate here that the net flow directions of spin-polarized photocurrents in TI polycrystalline thin films without electrodes can be precisely and intentionally controlled by the polarization of the excitation pulse alone, which is characterized by performing time-domain terahertz (THz) wave measurements and time-resolved magneto-optical Kerr rotation measurements that are non-contact methods. We show that the amplitudes of s-polarized THz waves radiated from photocurrents under right- and left-circularly polarized excitations are inverted relative to one another. Moreover, we observe the inversion of time-resolved magneto-optical Kerr rotation signals between the two excitations. Our results will open the way as innovative methods to control spin-polarized electrons in optoelectronic and spintronic TI devices without the need to apply external fields.

Keywords: thin films; control; spin polarized; control spin; optical control

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.