LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae

Photo from wikipedia

Ginseng (Panax ginseng) and its bioactive components, ginsenosides, are popular medicinal herbal products, exhibiting various pharmacological effects. Despite their advocated use for medication, the long cultivation periods of ginseng roots… Click to show full abstract

Ginseng (Panax ginseng) and its bioactive components, ginsenosides, are popular medicinal herbal products, exhibiting various pharmacological effects. Despite their advocated use for medication, the long cultivation periods of ginseng roots and their low ginsenoside content prevent mass production of this compound. Yeast Saccharomyces cerevisiae was engineered for production of protopanaxadiol (PPD), a type of aglycone characterizing ginsenoside. PPD-producing yeast cell factory was further engineered by obtaining a balance between enzyme expressions and altering cofactor availability. Different combinations of promoters (PGPD, PCCW12, and PADH2) were utilized to construct the PPD biosynthetic pathway. Rerouting the redox metabolism to improve NADPH availability in the engineered S. cerevisiae also increased PPD production. Combining these approaches resulted in more than an 11-fold increase in PPD titer over the initially constructed strain. The series of metabolic engineering strategies of this study provides a feasible approach for the microbial production of PPD and development of microbial platforms producing other industrially-relevant terpenoids.

Keywords: synthetic pathways; saccharomyces cerevisiae; production; ppd; nadph synthetic; rerouting nadph

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.