LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FAST-1 antisense RNA epigenetically alters FXN expression

Photo from wikipedia

Friedreich ataxia (FRDA) is a multisystem genetic disorder caused by GAA repeat expansion mutations within the FXN gene, resulting in heterochromatin formation and deficiency of frataxin protein. Elevated levels of… Click to show full abstract

Friedreich ataxia (FRDA) is a multisystem genetic disorder caused by GAA repeat expansion mutations within the FXN gene, resulting in heterochromatin formation and deficiency of frataxin protein. Elevated levels of the FXN antisense transcript (FAST-1) have previously been detected in FRDA. To investigate the effects of FAST-1 on the FXN gene expression, we first stably overexpressed FAST-1 in non-FRDA cell lines and then we knocked down FAST-1 in FRDA fibroblast cells. We observed decreased FXN expression in each FAST-1 overexpressing cell type compared to control cells. We also found that FAST-1 overexpression is associated with both CCCTC-Binding Factor (CTCF) depletion and heterochromatin formation at the 5′UTR of the FXN gene. We further showed that knocking down FAST-1 in FRDA fibroblast cells significantly increased FXN expression. Our results indicate that FAST-1 can act in trans in a similar manner to the cis-acting FAST-1 overexpression that has previously been identified in FRDA fibroblasts. The effects of stably transfected FAST-1 expression on CTCF occupancy and heterochromatin formation at the FXN locus suggest a direct role for FAST-1 in the FRDA molecular disease mechanism. Our findings also support the hypothesis that inhibition of FAST-1 may be a potential approach for FRDA therapy.

Keywords: fast frda; expression fast; expression; fxn expression; fxn gene; heterochromatin formation

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.