Chloroplast genomes (cp genomes) are widely used in comparative genomics, population genetics, and phylogenetic studies. Obtaining chloroplast genomes from RNA-Seq data seems feasible due to the almost full transcription of… Click to show full abstract
Chloroplast genomes (cp genomes) are widely used in comparative genomics, population genetics, and phylogenetic studies. Obtaining chloroplast genomes from RNA-Seq data seems feasible due to the almost full transcription of cpDNA. However, the reliability of chloroplast genomes assembled from RNA-Seq instead of genomic DNA libraries remains to be thoroughly verified. In this study, we assembled chloroplast genomes for three Erysimum (Brassicaceae) species from three RNA-Seq replicas and from one genomic library of each species, using a streamlined bioinformatics protocol. We compared these assembled genomes, confirming that assembled cp genomes from RNA-Seq data were highly similar to each other and to those from genomic libraries in terms of overall structure, size, and composition. Although post-transcriptional modifications, such as RNA-editing, may introduce variations in the RNA-seq data, the assembly of cp genomes from RNA-seq appeared to be reliable. Moreover, RNA-Seq assembly was less sensitive to sources of error such as the recovery of nuclear plastid DNAs (NUPTs). Although some precautions should be taken when producing reference genomes in non-model plants, we conclude that assembling cp genomes from RNA-Seq data is a fast, accurate, and reliable strategy.
               
Click one of the above tabs to view related content.