LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon

Photo from wikipedia

Plant defense inducers that mimic functions of the plant immune hormone salicylic acid (SA) often affect plant growth. Although benzothiadiazole (BTH), a synthetic analog of SA, has been widely used… Click to show full abstract

Plant defense inducers that mimic functions of the plant immune hormone salicylic acid (SA) often affect plant growth. Although benzothiadiazole (BTH), a synthetic analog of SA, has been widely used to protect crops from diseases by inducing plant defense responses, we recently demonstrated that SA, but not BTH, confers resistance against Rhizoctonia solani, the causal agent of sheath blight disease, in Brachypodium distachyon. Here, we demonstrated that BTH compromised the resistance of Bd3-1 and Gaz4, the two sheath blight-resistant accessions of B. distachyon, which activate SA-dependent signaling following challenge by R. solani. Moreover, upon analyzing our published RNA-seq data from B. distachyon treated with SA or BTH, we found that BTH specifically induces expression of genes related to chloroplast function and jasmonic acid (JA) signaling, suggesting that BTH attenuates R. solani resistance by perturbing growth-defense trade-offs and/or by inducing a JA response that may increase susceptibility to R. solani. Our findings demonstrated that BTH does not work as a simple mimic of SA in B. distachyon, and consequently may presumably cause unfavorable side effects through the transcriptional alteration, particularly with respect to R. solani resistance.

Keywords: plant; defense; distachyon; resistance; plant defense; sheath blight

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.