LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ Measurement of Self-Atom Diffusion in Solids Using Amorphous Germanium as a Model System

Photo by hudsoncrafted from unsplash

We present in-situ self-diffusion experiments in solids, which were carried out by Focussing Neutron Reflectometry on isotope multilayers. This new approach offers the following advantages in comparison to classical ex-situ… Click to show full abstract

We present in-situ self-diffusion experiments in solids, which were carried out by Focussing Neutron Reflectometry on isotope multilayers. This new approach offers the following advantages in comparison to classical ex-situ measurements: (1) Identification and continuous measurement of a time dependence of diffusivities, (2) significant reduction of error limits of diffusivities, and (3) substantial reduction of the necessary experimental time. In the framework of a case study, yet unknown self-diffusivities in amorphous germanium are measured at various temperatures quasi-continuously, each during isothermal annealing. A significant decrease of diffusivities as a function of annealing time by one order of magnitude is detected that is attributed to structural relaxation accompanied by defect annihilation. In metastable equilibrium the diffusivities follow the Arrhenius law between 375 and 412 °C with an activation energy of Q = (2.11 ± 0.12) eV. The diffusivities are five orders of magnitude higher than in germanium single crystals at 400 °C, mainly due to the lower activation energy.

Keywords: situ measurement; diffusion; germanium; amorphous germanium; measurement self; self

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.