We report a simple, inexpensive and rapid method for fabrication of a stable and transparent superhydrophobic (TSHB) surface and its reversible transition to a transparent superhydrophilic (TSHL) surface. We provide… Click to show full abstract
We report a simple, inexpensive and rapid method for fabrication of a stable and transparent superhydrophobic (TSHB) surface and its reversible transition to a transparent superhydrophilic (TSHL) surface. We provide a mechanistic understanding of the superhydrophobicity and superhydrophilicity and the reversible transition. The proposed TSHB surface was created by candle sooting a partially cured n-hexane + PDMS surface followed by washing with DI water. The nano/microscopic grooved structures created on the surface conforms Cassie – Baxter state and thus gives rise to superhydrophobicity (water contact angle (WCA) = 161° ± 1°). The TSHB surface when subjected to oxygen plasma develops -OH bonds on the surface thus gets transformed into a TSHL surface (WCA < 1°). Both surface chemistry and surface morphology play important roles for the superhydrophobic to superhydrophilic transition. In the Cassie – Baxter relation for a composite surface, due to the capillary spreading of liquid in the nano/micro grooves, both θ1, θ2 = 0, thus giving rise to complete wetting. Rapid recovery of superhydrophobicity from superhydrophilicity was achieved by heating the TSHL surface at 150 °C for 30 min, due to a much faster adsorption of the -OH bonds into the PDMS. Thus it is possible to achieve reversible transition from TSHB to TSHL and vice versa by exposing to oxygen plasma and heat, respectively.
               
Click one of the above tabs to view related content.