Experiments with groups of fish inside a circular tank have provided valuable insights into the nature of leadership in social groups. Sophisticated mathematical models were constructed with a view to… Click to show full abstract
Experiments with groups of fish inside a circular tank have provided valuable insights into the nature of leadership in social groups. Sophisticated mathematical models were constructed with a view to recovering observed schooling and leadership behavior in such experiments. Here, and with the help of variations on a promising class of such models, we explore a dual set of social concerns, namely the likelihood of permanent evasion from a cohesive group by a controlled individual in confinement. Our minimal model reduces to a leader-follower configuration, with cone-of-vision driven interactions inside a circular domain. We show that the resulting dynamical system sustains a rich supply of non-aligned, straying “follower” states, the dynamics on which displays (chaotic) intermittency between boundary following behavior and infrequent long flights. We map these states in configuration space and explore transitions between them. We demonstrate robustness of observed behavior by considering model variations, as well as alternate leader control trajectory. While it is too early to draw the implications of leader-follower dynamics to collective behavior, we do confirm that a model stray fish relates to a self-organized school bouncing back and forth along the diameter very much like a follower responds to a point leader in our model. We further draw the implications of our results to the study of dynamical systems with discontinuities, robotics, and the study of human behavior in the face of normative control and confinement.
               
Click one of the above tabs to view related content.