LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repetitive sex change in the stony coral Herpolitha limax across a wide geographic range

Photo by rossf from unsplash

Sex change has been widely studied in animals and plants. However, the conditions favoring sex change, its mode and timing remain poorly known. Here, for the first time in stony… Click to show full abstract

Sex change has been widely studied in animals and plants. However, the conditions favoring sex change, its mode and timing remain poorly known. Here, for the first time in stony corals, we report on a protandrous (youngest individuals are males) repetitive sex change exhibited by the fungiid coral Herpolitha limax across large spatial scales (the coral reefs of Japan, Jordan and Israel) and temporal scales (2004–2017). In contrast to most corals, this species is a daytime spawner (08:00–10:00 AM) that spawned at the same time/same date across all the study sites. The sporadically scattered populations of H. limax among the coral reefs of Eilat (Israel) and Aqaba (Jordan) exhibited significantly slower growth, earlier sex change, and lower percentages of reproduction and sex change in comparison to the densely aggregated populations in Okinawa (Japan). At all sites, sex ratio varied among years, but was almost always biased towards maleness. Growth rate decreased with size. We conclude that comparable to dioecious plants that display labile sexuality in response to energetic and/or environmental constraints, the repetitive sex change displayed by H. limax increases its overall fitness reinforcing the important role of reproductive plasticity in the Phylum Cnidaria in determining their evolutionary success.

Keywords: sex change; coral herpolitha; limax; sex; repetitive sex

Journal Title: Scientific Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.