Absolute pitch (AP) is defined as the ability to identify and label tones without reference to keyality. In this context, the main question is whether early or late processing stages… Click to show full abstract
Absolute pitch (AP) is defined as the ability to identify and label tones without reference to keyality. In this context, the main question is whether early or late processing stages are responsible for this ability. We investigated the electrophysiological responses to tones in AP and relative pitch (RP) possessors while participants listened attentively to sine tones. Since event-related potentials are particularly suited for tracking tone encoding (N100 and P200), categorization (N200), and mnemonic functions (N400), we hypothesized that differences in early pitch processing stages would be reflected by increased N100 and P200-related areas in AP musicians. Otherwise, differences in later cognitive stages of tone processing should be mirrored by increased N200 and/or N400 areas in AP musicians. AP possessors exhibited larger N100 areas and a tendency towards enhanced P200 areas. Furthermore, the sources of these components were estimated and statistically compared between the two groups for a set of a priori defined regions of interest. AP musicians demonstrated increased N100-related current densities in the right superior temporal sulcus, middle temporal gyrus, and Heschl’s gyrus. Results are interpreted as indicating that early between-group differences in right-sided perisylvian brain regions might reflect auditory tone categorization rather than labelling mechanisms.
               
Click one of the above tabs to view related content.