LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Validation and quality assessment of macromolecular structures using complex network analysis

Photo from wikipedia

Validation of three-dimensional structures is at the core of structural determination methods. The local validation criteria, such as deviations from ideal bond length and bonding angles, Ramachandran plot outliers and… Click to show full abstract

Validation of three-dimensional structures is at the core of structural determination methods. The local validation criteria, such as deviations from ideal bond length and bonding angles, Ramachandran plot outliers and clashing contacts, are a standard part of structure analysis before structure deposition, whereas the global and regional packing may not yet have been addressed. In the last two decades, three-dimensional models of macromolecules such as proteins have been successfully described by a network of nodes and edges. Amino acid residues as nodes and close contact between the residues as edges have been used to explore basic network properties, to study protein folding and stability and to predict catalytic sites. Using complex network analysis, we introduced common network parameters to distinguish between correct and incorrect three-dimensional protein structures. The analysis showed that correct structures have a higher average node degree, higher graph energy, and lower shortest path length than their incorrect counterparts. Thus, correct protein models are more densely intra-connected, and in turn, the transfer of information between nodes/amino acids is more efficient. Moreover, protein graph spectra were used to investigate model bias in protein structure.

Keywords: network; validation; analysis; using complex; complex network; network analysis

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.