LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A basic Helix-Loop-Helix (SlARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits

Photo by danicalifornia from unsplash

Carotenoid accumulation in tomato (Solanum lycopersicum) fruits is influenced by environmental stimuli and hormonal signals. However, information on the relative regulatory mechanisms are scanty since many molecular players of the… Click to show full abstract

Carotenoid accumulation in tomato (Solanum lycopersicum) fruits is influenced by environmental stimuli and hormonal signals. However, information on the relative regulatory mechanisms are scanty since many molecular players of the carotenoid biosynthetic pathway are still unknown. Here, we reported a basic Helix-Loop-Helix transcription factor, named SlARANCIO (SlAR), whose silencing influences carotenoid accumulation in tomato fruits. The SlAR gene was found in the S. pennellii introgression line (IL) 12-4SL that holds the carotenoid QTL lyc12.1. We observed that the presence of the wild region in a cultivated genetic background led to a decrease in total carotenoid content of IL12-4SL fruits. To get insights into the function of SlAR, a quick reverse genetic approach was carried out. Virus-induced gene silencing of SlAR in S. lycopersicum M82 and MicroTom fruits reproduced the same phenotype observed in IL12-4SL, i.e. decreased content of lycopene and total carotenoids. Vice versa, the overexpression of SlAR in Nicotiana benthamiana leaves increased the content of total carotenoids and chlorophylls. Our results, combined with public transcriptomic data, highly suggest that SlAR acts indirectly on the carotenoid pathway and advances current knowledge on the molecular regulators controlling lyc12.1 and, potentially, precursors of carotenoid biosynthesis.

Keywords: carotenoid accumulation; accumulation tomato; helix; basic helix

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.