LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single step synthesis of highly conductive room-temperature stable cation-substituted mayenite electride target and thin film

Photo by seemurray from unsplash

Novel approaches to synthesize efficient inorganic electride [Ca24Al28O64]4+(e−)4 (thereafter, C12A7:e−) at ambient pressure under nitrogen atmosphere, are actively sought out to reduce the cost of massive formation of nanosized powder… Click to show full abstract

Novel approaches to synthesize efficient inorganic electride [Ca24Al28O64]4+(e−)4 (thereafter, C12A7:e−) at ambient pressure under nitrogen atmosphere, are actively sought out to reduce the cost of massive formation of nanosized powder as well as compact large size target production. It led to a new era in low cost industrial applications of this abundant material as Transparent Conducting Oxides (TCOs) and as a catalyst. Therefore, the present study about C12A7:e− electride is directed towards challenges of cation doping in C12A7:e− to enhance the conductivity and form target to deposit thin film. Our investigation for cation doping on structural and electrical properties of Sn- and Si-doped C12A7:e− (Si-C12A7:e, and Sn-C12A7:e−) reduced graphene oxide (rGO) composite shows the maximum achieved conductivities of 5.79 S·cm−1 and 1.75 S·cm−1 respectively. On the other hand when both samples melted, then rGO free Sn-C12A7:e− and Si-C12A7:e− were obtained, with conductivities ~280 S.cm−1 and 300 S·cm−1, respectively. Iodometry based measured electron concentration of rGO free Sn-C12A7:e− and Si-C12A7:e−, 3 inch electride targets were ~2.22 × 1021 cm−3, with relative 97 ± 0.5% density, and ~2.23 × 1021 cm−3 with relative 99 ± 0.5% density, respectively. Theoretical conductivity was already reported excluding any associated experimental support. Hence the above results manifested feasibility of this sol-gel method for different elements doping to further boost up the electrical properties.

Keywords: c12a7; cation; thin film; target; c12a7 c12a7

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.