LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Roles of cellular heterogeneity, intrinsic and extrinsic noise in variability of p53 oscillation

The p53 protein is a key mediator of the cellular response to various stress signals. In response to DNA damage, the concentration of p53 can temporally oscillate with fluctuations in… Click to show full abstract

The p53 protein is a key mediator of the cellular response to various stress signals. In response to DNA damage, the concentration of p53 can temporally oscillate with fluctuations in both the amplitude and period. The underlying mechanism for p53 variability is not fully understood. Here, we construct a core regulatory network of p53 dynamics comprising the ATM-p53-Wip1 and p53-Mdm2 negative feedback loops. We dissect the contributions of cellular heterogeneity, intrinsic noise, and multiple forms of extrinsic noise to p53 variability in terms of the coefficients of variation of four quantities. Cellular heterogeneity greatly determines the fraction of oscillating cells among a population of isogenic cells. Intrinsic noise—fluctuation in biochemical reactions–has little impact on p53 variability given large amounts of molecules, whereas extrinsic colored noise with proper strength and correlation time contributes much to oscillatory variability in individual cells. With the three sources of noise combined, our results reproduce the experimental observations, suggesting that the long correlation time of colored noise is essential to p53 variability. Compared with previous studies, the current work reveals both the individual and integrated effects of distinct noise sources on p53 variability. This study provides a framework for exploring the variability in oscillations in cellular signaling pathways.

Keywords: p53 variability; variability; cellular heterogeneity; noise; p53

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.