LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lipid normalization and stable isotope discrimination in Pacific walrus tissues

Photo by tandemxvisuals from unsplash

Analysis of stable carbon and nitrogen isotope values (δ13C and δ15N) of animal tissues can provide important information about diet, physiology, and movements. Interpretation of δ13C and δ15N values, however,… Click to show full abstract

Analysis of stable carbon and nitrogen isotope values (δ13C and δ15N) of animal tissues can provide important information about diet, physiology, and movements. Interpretation of δ13C and δ15N values, however, is influenced by factors such as sample lipid content, tissue-specific isotope discrimination, and tissue turnover rates, which are typically species- and tissue-specific. In this study, we generated lipid normalization models for δ13C and investigated the effects of chemical lipid extractions on δ13C and δ15N in Pacific walrus (Odobenus rosmarus divergens) muscle, liver, and skin. We also evaluated tissue-specific isotope discrimination in walrus muscle, liver, skin, and bone collagen. Mean δ13Clipid-free of skin and bone collagen were similar, as were mean δ15N of muscle and liver. All other tissues differed significantly for both isotopes. Differences in δ13Clipid-free and δ15N among tissues agreed with published estimates of marine mammal tissue-specific isotope discrimination factors, with the exception of skin. The results of this work will allow researchers to gain a clearer understanding of walrus diet and the structure of Arctic food webs, while also making it possible to directly compare the results of contemporary walrus isotope research with those of historic and paleoecological studies.

Keywords: tissue specific; isotope; isotope discrimination; walrus; lipid normalization

Journal Title: Scientific Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.